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Scanning transmission electron microscopy (STEM) is a powerful technique for directly 

visualizing atomic-scale structures inside materials and devices. In the state-of-the-art STEM, a probe 

size of less than 0.5Å in diameter has been experimentally realized. Now, the following interesting 

question arises: beyond just atoms, what might become observable by using such fine electron probes? 

One answer to this question may be exploring new possibilities in phase contrast imaging of STEM [1]. 

By using elaborate detectors, we can not only image single atoms, but can also image electric field 

distribution inside single atoms [2]. It then becomes tempting to directly observe magnetic fields of 

atoms. However, atomic-resolution observation of magnetic materials is essentially very difficult 

because high magnetic fields (>2T) are always exerted on samples inside the magnetic objective lens. 

In recent years, we have succeeded in developing a new magnetic objective lens system that realizes a 

magnetic field free environment at the sample position [3]. Using this new objective lens system in 

combination with differential phase contrast imaging technique, real-space visualization of intrinsic 

magnetic fields of an antiferromagnet has been achieved [4]. This novel electron microscope 

(Magnetic-field-free Atomic Resolution STEM: MARS) is expected to be used for research and 

development of many magnetic materials and devices. In this talk, I will show some resent material 

application using the MARS [5-9] and also introduce the new development project (MAgnetic field-

free Cryogenic Atomic resoLUtion electron microscope: MACALU) supported by JST ERATO. 
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