DEVELOPMENT AND APPLICATION OF MAGNETIC-FIELD-FREE ATOMIC-RESOLUTION ELECTRON MICROSCOPY

N. Shibata^{1,2,3}

¹ Institute of Engineering Innovation, The University of Tokyo, Japan ² Nanostructures Research Laboratory, Japan Fine Ceramic Center, Japan E-mail: shibata@sigma.t.u-tokyo.ac.jp

Scanning transmission electron microscopy (STEM) is a powerful technique for directly visualizing atomic-scale structures inside materials and devices. In the state-of-the-art STEM, a probe size of less than 0.5Å in diameter has been experimentally realized. Now, the following interesting question arises: beyond just atoms, what might become observable by using such fine electron probes? One answer to this question may be exploring new possibilities in phase contrast imaging of STEM [1]. By using elaborate detectors, we can not only image single atoms, but can also image electric field distribution inside single atoms [2]. It then becomes tempting to directly observe magnetic fields of atoms. However, atomic-resolution observation of magnetic materials is essentially very difficult because high magnetic fields (>2T) are always exerted on samples inside the magnetic objective lens. In recent years, we have succeeded in developing a new magnetic objective lens system that realizes a magnetic field free environment at the sample position [3]. Using this new objective lens system in combination with differential phase contrast imaging technique, real-space visualization of intrinsic magnetic fields of an antiferromagnet has been achieved [4]. This novel electron microscope (Magnetic-field-free Atomic Resolution STEM: MARS) is expected to be used for research and development of many magnetic materials and devices. In this talk, I will show some resent material application using the MARS [5-9] and also introduce the new development project (MAgnetic fieldfree Cryogenic Atomic resoLUtion electron microscope: MACALU) supported by JST ERATO.

References

- [1] N. Shibata et al., Nature Phys. 8, 611-615 (2012).
- [2] N. Shibata et al., Nature Comm. 8, 15631 (2017).
- [3] N. Shibata et al., Nature Comm. 10, 2380 (2019).
- [4] Y. Kohno et al., Nature 602, 234 (2022).
- [5] S. Toyama et al., Nature Nanotech. 18, 521-528 (2023).
- [6] T. Seki et al., Nature Comm. 14, 7806 (2023)
- [7] S. Toyama et al., Nature Comm. 15, 8704 (2024).
- [8] S. Toyama et al., Nature Rev. Electr. Eng. 2, 27–41 (2025).
- [9] M. Takamoto et al., Sci. Adv. 11, eadu8021 (2025).