OPTICAL SENSING TECHNOLOGY TAILORED FOR ADVANCED INDUSTRIAL APPLICATIONS

Rajan Jha

¹ Nanophotonics and Plasmonics Laboratory, School of Basic Sciences IIT Bhubaneswar, Khurda 752 050, Odisha, India E-mail: rjha@iitbbs.ac.in

High-resolution, integrable, and reconfigurable optical inline platforms have become indispensable for enabling next-generation photonic technologies. In particular, hydrophones for underwater mapping, optical profilometers, magnetometer and optical flowmeter have substantially benefited from advances in high-resolution cavity interferometers that exploit the excitation of fundamental and higher-order modes in processed fibers, microfibers, and their hybrid configurations [1–2]. At the same time, strong light-matter interactions have been realized by integrating optical nanowires with diverse quantum emitters, including nitrogen-vacancy centers embedded in asymmetric elliptical-faceted diamond nanowires (ELFA) [3] and nanophotonic cavities formed by periodic rectangular through-hole etching on optical nanowires [4-5]. These cavity-enhanced structures facilitate efficient unidirectional and/or bidirectional coupling of single photons emitted from such quantum systems.

Acknowledgements

R.J. acknowledges the funding support from NTTM and National Quantum Mission (NQM), DST, Govt. of India

References

- [1] K. Chatterjee, S. K. Pal & R. Jha, "Reconfigurable Optical Magnetometer for Static and Dynamic Fields", Advanced Optical Materials, 9 (3), 2001574, (2021).
- [2] S. Dass, S. Kachhap, & R. Jha, "Hearing the Sounds of Aquatic Life Using Optical Fiber Micro-tip based Hydrophone, IEEE Transactions on Instrumentation and Measurement, 69 (7), 4015-4020 (2019).
- [3] S. Murmu, A. Kumar, & R. Jha, "Bidirectional coupling of diamond emitters to optical nanowire: tunable and efficient", JOSA B 38 (12), F170-F177 (2021).
- [4] S. Sahu, K. P. Nayak, & R. Jha, "Optimization of nanofiber gratings for efficient single-photon collection", Journal of Optics (2022).
- [5] S. Murmu, A. Kumar, & R. Jha, "Unidirectional Photon Coupling Using Asymmetric Diamond Emitters with Enhanced Spontaneous Emission" Advanced Quantum Technologies, 5 (7), 2100160, (2022).